Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems
نویسنده
چکیده
Uncertainty quanti cation and propagation in physical systems appear as a critical path for the improvement of the prediction of their response. Galerkin-type spectral stochastic methods provide a general framework for the numerical simulation of physical models driven by stochastic partial di erential equations. The response is searched in a tensor product space, which is the product of deterministic and stochastic approximation spaces. The computation of the approximate solution requires the solution of a very high dimensional problem, whose calculation costs are generally prohibitive. Recently, a model reduction technique, named Generalized Spectral Decomposition method, has been proposed in order to reduce these costs. This method belongs to the family of Proper Generalized Decomposition methods. It takes part of the tensor product structure of the solution function space and allows the a priori construction of a quasi optimal separated representation of the solution, which has quite the same convergence properties as a posteriori Hilbert Karhunen-Loève decompositions. The associated algorithms only require the solution of a few deterministic problems and a few stochastic problems on deterministic reduced basis (algebraic stochastic equations), these problems being uncoupled. However, this method does not circumvent the curse of dimensionality which is associated with the dramatic increase in the dimension of stochastic approximation spaces, when dealing with high stochastic dimension. In this paper, we propose a mariage between the Generalized Spectral Decomposition algorithms and a separated representation methodology, which exploits the tensor product structure of stochastic functions spaces. An e cient algorithm is proposed for the a priori construction of separated representations of square integrable vector-valued functions de ned on a high-dimensional probability space, which are the solutions of systems of stochastic algebraic equations.
منابع مشابه
Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces
Tensor-based methods are receiving a growing interest in scienti c computing for the numerical solution of problems de ned in high dimensional tensor product spaces. A family of methods called Proper Generalized Decompositions methods have been recently introduced for the a priori construction of tensor approximations of the solution of such problems. In this paper, we give a mathematical analy...
متن کاملA priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations
Over the past years, model reduction techniques have become a necessary path for the reduction of computational requirements in the numerical simulation of complex models. A family of a priori model reduction techniques, called Proper Generalized Decomposition (PGD) methods, are receiving a growing interest. These methods rely on the a priori construction of separated variables representations ...
متن کاملA Generalization of the Eckart and Young Theorem and the Proper Generalized Decomposition
The a posteriori construction of such tensor decompositions, knowing the function u, have been extensively studied over the past years in multilinear algebra community [5, 6, 11, 12, 4, 7] (essentially for finite dimensional vector spaces Vi). The question of finding an optimal decomposition of a given rank r is not trivial and has led to various definitions and associated algorithms for the se...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملA Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010